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Preamble: The bulk of this talk will be classical (going back to 1983). The last part is based
on work in progress, in fact so much in progress that I don’t have nearly as much to say about
it as I’d like to. Also, this is a hard topic to give a satisfying talk on because a disproportionate
amount of its complexity lies in the definitions of the objects and categories I’m talking about.
It can be hard to keep all the moving parts in your head if it’s not something you think about
regularly. Please stop me and ask if you get confused about anything.

1 Review of the de Rham-Witt complex
Let k be a perfect field of characteristic p, W = W (k), and σ : W → W the Witt vector
Frobenius. Let X/k be a variety, which in this talk (for simplicity) will always be smooth and
usually proper.

The de Rham-Witt complex of X/k, first constructed by Illusie in 1979, is designed to lift
the de Rham complex Ω•X/k to characteristic 0, and thereby to compute crystalline cohomology.
It is defined as the initial object in a rather complicated category. Rather than giving its full
definition, I will just outline what kinds of structure it has, and some of the key conditions we
impose. It contains the data:

...

R
����

...

R
����

W2OX d //

R
����

W2Ω
1
X

d //

R
����

· · ·

W1OX d //W1Ω
1
X

d // · · ·

Here each WnΩi
X is a sheaf of WnOX-modules, with Wn(k)-linear differentials and vertical

quotient maps. (The bottom row is just the de Rham complex of X, and the leftmost column
is the sheaf of Witt vectors of OX .) Additionally, each row has a multiplication map making it
a cdga. Finally, each column has maps F going down and V going up, satisfying the following
relations:

∗Notes for a talk in Stanford’s student algebraic geometry seminar. Main reference: Ekedahl, “On the
multiplicative properties of the de Rham-Witt complex II”.

1



(a) FV = V F = p

(b) dF = pFd, V d = pdV , FdV = d,

(c) F (a) = σ(a) and V (a) = pσ−1(a) for a ∈ W ,

(d) F (xy) = F (x) · F (y),

(e) V (F (x) · y) = x · V (y),

and a few others.

The complex WΩ•X is defined as lim←WnΩ•X . The F, V, and d operators and the multipli-
cation map pass to the inverse limit, and they have the same relations as above. Given WΩ•X
with all of these operators, we can recover WnΩ•X as its quotient by the images of V n and dV n.
In practice, we pass betweenWΩ•X and (WnΩ•X)n more or less freely, but one must be somewhat
cautious about what operations do and don’t commute with the limit.

Remark: Under our smoothness hypotheses, WΩ•X turns out to be p-torsion-free. Then each of
the relations in (b) above is equivalent to saying that the map ϕ defined by piF on WΩi com-
mutes with d. This gives rise to the semilinear Frobenius operator ϕ on crystalline cohomology.

Theorem: The hypercohomology of the de Rham-Witt complex computes crystalline coho-
mology. More precisely, we have isomorphisms

Run∗(OX/Wn,cris)
∼= WnΩ•X (1)

Ru∗(OX/W,cris) ∼= WΩ•X (2)

inD(Ab(X)), where un : (X/Wn)cris → XZar and u : (X/W )cris → XZar are the usual morphisms
of sites. After applying RiΓ, these become isomorphisms

H∗cris(X/Wn) ∼= H∗(WnΩ•X) (3)
H∗cris(X/W ) ∼= H∗(WΩ•X). (4)

2 Example: Gm

Let’s write down the de Rham-Witt complex of X = Gm = SpecA, A = k[t±1]. This is
something that can be done entirely by hand, as Illusie does (and as I have done with Bhatt-
Lurie-Mathew’s construction). But the full calculation is a bit tedious, so I’ll just give you the
result along with a rough plausibility argument. I’ll write down the global sections of WΩi

X ,
from which one can calculate the global sections of WnΩi

X , and these determine the sheaf be-
cause it is quasicoherent when viewed as a sheaf on the affine scheme WnX.

Let’s first write down a reasonable guess for what W (A) might look like. It should contain
W [t±1], where t is the Teichmüller lift of t ∈ A. This ring has an obvious lift of Frobenius,
given by t 7→ tp and the Witt vector Frobenius on coefficients. But the Verschiebung should
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send tα to ptα/p in order to get FV = V F = p. So we must adjoin pntm/pn for all m ∈ Z and
n ≥ 0. The resulting ring is almost right, but isn’t complete. In fact, W (A) is equal to the
V -adic completion (equivalently, coefficient-wise p-adic completion) of this ring:

W (A) = (W [t±1, pntm/p
n

: m ∈ Z, n ≥ 0])̂V ←↩ W [t±1, pntm/p
n

]←↩ W [t±1] (5)
F (tα) = tpα, (and σ on coefficients) (6)

V (tα) = ptα/p. (7)

This is (the global sections of) WOX . As for WΩ1
X , we have:

WΩ1
X(X) = W [t±1/p

∞
]̂ · dt

t
, (8)

F

(
tα
dt

t

)
= tpα

dt

t
, (9)

V

(
tα
dt

t

)
= ptα/p

dt

t
. (10)

(We choose dt/t as our basis to make the formulas for F and V look nicer.) The differential
d : WOX → WΩ1

X sends tα to αtαdt/t, as one would expect. (The completion in degree 1 is a
little more subtle than that in degree 0, since we are completing with respect to the image of
dV n as well as V n. This is needed for the differential to be defined. But this won’t matter for us.)

Remark: There is a similar description of WΩ•A1 , where we only allow nonnegative powers
of t in degree 0 and positive powers in degree 1. This determines WΩ•P1 .

Exercise: compute the sheaf cohomology of each WΩi
P1 using the obvious Čech cover. Then use

the slope spectral sequence Hj(WΩi
X) =⇒ H i+j

cris (X/W ) to compute crystalline cohomology.

3 Ekedahl’s work
Next, let me summarize (part 2 of) Ekedahl’s thesis, “Multiplicative properties of the de Rham-
Witt complex”. The goal is to prove Künneth and duality formulas for crystalline cohomology
as generally and formally as possible, with most of the work happening on the de Rham-Witt
complex.

For concreteness, let’s very briefly sketch the classical proof of the Künneth formula for X, Y/k
smooth proper. The cup product gives a morphism

RΓcris(X/W )⊗LW RΓcris(Y/W )→ RΓcris(X ×k Y/W ) (11)

in D(W ). We claim that this is an isomorphism.

Fact: given that both sides have finitely generated cohomology, it suffices to check that it
is a quasi-isomorphism after ⊗LWk. This reduces the problem to the Künneth formula for de
Rham cohomology.
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The problem with this is that the hypothesis only holds when X and Y are smooth and proper.
(Recall that H1

cris(A
1 /W ) ∼= (

⊕
n≥0W/nW )̂p.) This can be fixed by using the completed ten-

sor product ⊗̂LW instead of the usual one. One must then show that ⊗̂LW agrees with ⊗LW for
complexes with finitely generated cohomology.

Ekedahl mimics this latter proof, but constructs the map at the level of WΩ•X(U) for U affine.
He views this as a module over a ring much larger than W , and defines a symmetric monoidal
structure for such modules that is universal for the product relations stated earlier. Once he
has built up (and derived) a suitable tensor formalism, the proof is formal. The result is an
isomorphism of the form

Rf∗WΩ•X ∗̂
L
RRg∗WΩ•Y = R(f × g)∗WΩ•X×Y (12)

under very mild hypotheses, and one can then hope to compare ∗̂LR to ⊗LW . (I will omit the state-
ment of his duality theorem, as it would require discussing perfect complexes of R-modules.)

Definition: The Raynaud ring R is the (noncommutative graded) W -algebra generated by
F and V in degree 0 and d in degree 1, with all the relations stated earlier. (This has a W -
basis consisting of elements of the form F n, V n, F nd, and dV n.) Unless stated otherwise, all
R-modules we discuss will be graded left modules.

Next we construct the operation on R-modules that will replace ⊗W . This is defined as
the product universal for the multiplicative relations satisfied by d, F, and V . Namely, for
M,N ∈ R − mod, we let M ∗R N be the R-module generated by symbols m ∗ n, with the
following relations:

• W -bilinearity,

• d(m ∗ n) = d(m) ∗ n+ (−1)|m|m ∗ dn for m homogeneous,

• F (x ∗ y) = F (x) ∗ F (y),

• V (F (x) ∗ y) = x ∗ V (y), and V (x ∗ F (y)) = V (x) ∗ y.

This makes R-mod a symmetric monoidal category with unit object W (where F = 1 and
V = p). In particular, R ∗R R is not isomorphic to R; it is free of countably infinite rank over
R.

Remark: Roughly, M ∗ N looks like M ⊗W N with a Verschiebung adjoined. I’ll give an-
other way to think about it later.

Strictly speaking, we really care about complete R-modules and the completed star product
∗̂R, where the completion is with respect to the topology defined by (imV n + im dV n)n. But I
won’t have time to say much about this.
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Ekedahl next constructs an internal Hom functor Hom!
R satisfying the usual Hom-tensor ad-

junction with ∗R. This is more subtle than it sounds. It turns out what we need is the following:

Hom!
R(M,N) = HomR(R ∗RM,N). (13)

Since R is noncommutative, this only obviously has the structure of a graded group (whose ith
graded piece consists of degree-i maps). But R is also a right R-module, so R∗RM is a bimodule
(with right-multiplication acting only on R), and this extra structure gives the Hom-set the
structure of a left R-module.

Most of the work in Ekedahl’s paper consists of extending these functors to the (suitably
bounded) derived category of R-modules, and checking that they have the expected properties.

4 Quick recap of BLM
Bhatt-Lurie-Mathew gives a new construction of the so-called saturated de Rham-Witt complex
of an Fp-scheme, which agrees with the classical one for smooth schemes. This is constructed
affine-locally to satisfy a certain universal property, and the key categories involved are as fol-
lows.

Definition: a Dieudonné complex is a complex M∗ of abelian groups equipped with an en-
domorphism F : M i →M i for each i such that dF = pFd.

Definition: a Dieudonné complex is saturated if it is p-torsion-free and the map ϕ : M∗ → ηpM
∗

given by piF in degree i is an isomorphism.

Exercise: a saturated Dieudonné complex has a unique operator V such that FV = p, and
this also satisfies V F = p, V d = pdV , FdV = d, etc.

Definition: a Dieudonné complex is strict if it is saturated and complete with respect to the
topology defined by (imV n + im dV n)n.

Then we have inclusions of categories DC ←↩ DCsat ←↩ DCstr, with left-adjoints Sat and
W .

Theorem (Bhatt-Lurie-Mathew): DCstr is equivalent to D̂(Z)
Lηp

p . So every object in the de-
rived category of Z-modules that “looks enough like crystalline cohomology” can be uniquely
represented by a strict Dieudonné complex.

5 My project
Motivation: R-modules look a lot like saturated Dieudonné complexes, and complete R-modules
look a lot like strict Dieudonné complexes. The main difference between the R-module world
and the saturated world is the rigidity property of strict Dieudonné complexes mentioned above,
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which effectively allows us to turn quasi-isomorphisms into isomorphisms. The hope is that this
will make DCstr a good setting in which to rework Ekedahl’s thesis, with the goal of general-
izing it as far as possible (adding coefficients, working over a non-perfect base, . . . ).

Observation: The data of a Dieudonné complex is the same as the data of a graded left module
over a particular graded ring, R′ = Z〈F, d〉/(d2, dF − pFd). (Here we put F in degree 0 and d
in degree 1.) It follows that R′ itself is the free Dieudonné complex on one generator (in degree
0), and SatR′ is the free saturated Dieudonné complex on one generator. But SatR′ ⊗Z W is
exactly the Raynaud ring R.1

Let me be more precise about the relationship between the various categories we are con-
cerned with. We have the following diagram of various categories, with various adjoint pairs
of functors. (I’ll tell the Z-linear story; note that SatR′ and W SatR′ become R and R̂ upon
tensoring up to W .)

DC DCsat
oo

��

DCstr
oo

��
R′ −mod (SatR′)−modoo (W SatR′)−mod.oo

The second and third vertical maps are not equivalences of categories. Example: let M∗ =
Zp[
√
p], concentrated in degree 0, with F = V =

√
p. This is a W SatR′-module, but it is not

saturated, as p0F : M0 → (ηpM)0 = M0 is not an isomorphism.

Ekedahl’s star product and internal Hom have analogues in all of these categories. In DC,
the analogue of ∗R is just the Z-linear tensor product of complexes, equipped with F defined
by F (x⊗ y) = F (x)⊗F (y) and d defined by the graded Leibniz rule. In DCsat and DCstr, the
analogues are Sat(−⊗−) and W Sat(−⊗−).

To construct an internal Hom functor in DC, we imitate Ekedahl’s construction in R-mod:

Hom!
DC(M,N) = HomDC(R′ ⊗Z M,N) (14)

as a graded group, with Dieudonné complex structure coming from the right-R′-module struc-
ture (“right-Dieudonné complex structure”) of R′. This satisfies the expected adjunction, and
can be carried over to DCsat and DCstr. (TO DO: can it?)

The upward and rightward maps in this diagram are compatible with symmetric monoidal
structures. The leftward ones aren’t. In order to imitate Ekedahl’s work, I will need to show
that the downward maps are, at least after passing to W1. (to do).

A bigger challenge: DCsat and DCstr are tricky to work with. They’re not abelian categories,
so it will be harder to discuss derived functors from them.

1Remark: the construction of Bhatt-Lurie-Mathew is absolute; it makes no reference to the ground field,
but recovers the classical de Rham-Witt complex of every variety that is smooth over some perfect field of
characteristic p.
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